
Journal of Information Processing Vol.26 1–17 (Jan. 2018)

Regular Paper

Dynamic Version Checking for Gradual Updating

Satsuki Kasuya1,a) Yudai Tanabe1,b) HidehikoMasuhara1,c)

Received: December 6, 2024, Revised: March 11, 2025,
Accepted: March 21, 2025

Abstract: Programming with Version (PWV) is a programming paradigm that allows programmers to safely utilize
multiple versions of the same package within a single program, facilitating flexible version updates of dependent pack-
ages. Existing PWV languages ensure consistent version usage so as not to break software behaviors by leveraging
the type system of the base language. However, dynamically typed languages need a mechanism to support multiple
versions with an efficient method of ensuring consistent version usage without a type system. To introduce PWV
features into dynamically typed languages, we propose a dynamic version checking (DVC) mechanism. It records
version information in a value, propagates it during evaluation, and checks inconsistency using version information
recorded in values. When an inconsistency is detected, the mechanism suggests how to modify the program to resolve
potential semantic errors from the inconsistency. We develop Vython, a Python-based PWV language with DVC, and
implement its compiler. The compiler translates a Vython program into a Python program with bitwise operations. Our
performance measurement shows the DVC mechanism’s overhead is scalable and acceptable for small programs but
requires further optimization for real-world use. Additionally, we conduct a case study and discuss future directions to
facilitate smoother updates in practical development.

Keywords: Software maintenance, Software migration, Dependency management, Compiler, Python

1. Introduction
Updating the version of upstream packages is one of the most

troublesome tasks for downstream developers [17], [20]. An in-
compatible new version can break the behavior of downstream
programs [10], [16]. Each new release of upstream packages re-
quires downstream developers to assess its impact and modify
their source code accordingly.

Replacing an upstream package with its new version is auto-
mated by package managers such as pip*1 in Python. For ex-
ample, developers using NumPy [11] can automatically install
the latest version by running pip install --upgrade numpy.
Many developers benefit from this automation, as packages like
NumPy are widely used across various domains, such as data
analysis, deep learning, and image processing, in libraries like
Pandas [30], PyTorch [25], and OpenCV [4].

Downstream developers carefully coordinate existing pro-
grams to update fundamental packages such as NumPy. The first
major update of NumPy, version 2.0.0, was released in 2024. If
any of the packages in use depends on NumPy 1.x series, the
automatic installation of NumPy 2.0.0 via pip will fail. Manual
installation, which is possible from the source, can break the ex-
isting behavior of downstream programs unintentionally, as some
NumPy functions are incompatible with the old ones (see Ap-

1 Institute of Science Tokyo
Ookayama 2-12-1, Meguro, Tokyo 152–8552, Japan

a) satsuki.kasuya@prg.is.titech.ac.jp
b) yudaitnb@prg.is.titech.ac.jp
c) masuhara@acm.org
*1 pip: The PyPA recommended tool for installing Python packages.

https://pip.pypa.io/ (Accessed January 10, 2025)

pendix A.1).
Programming with Versions (PWV) [19], [27], [28] is a recent

proposal designed to enable a gradual transition to new versions,
thereby reducing update costs. The key ideas of PWV are (1) the
simultaneous use of multiple versions, and (2) language mecha-
nisms (i.e. types) that check version compatibilities. PWV lan-
guages ensure that programs use values created by compatible
versions.

While previous research realized PWV in statically-typed lan-
guages, this research explores methods implementing PWV func-
tionalities in dynamically-typed languages. To achieve this, we
propose dynamic version checking (DVC) to alert when values
of incompatible versions are used together at runtime. The DVC
mechanism facilitates developers’ communication regarding in-
compatibilities [18]; upstream developers specify compatibility
for each function, allowing downstream developers to assess the
impact of updates on their software through warnings.

The contributions of this paper are summarized as follows:
• We developed DVC, which records version information

within values, propagates it during an evaluation, and detects
inconsistencies based on the recorded version data.

• We implemented a Vython compiler, a PWV language with
DVC. The Vython compiler translates Vython programs into
Python programs, and the DVC functions are compiled into
efficient bitwise operations.

• We evaluated the runtime performance of the Vython com-
piler. The results showed that Vython is scalable and accept-
able for debugging small programs as an offline analysis tool
but requires further optimization for real-world use.

• We conducted a case study using gradual update scenarios

© 2018 Information Processing Society of Japan 1

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

User SciPy

NumPy

1.12.0

× Update
1.26.4⇒ 2.0.0

1.26.4

Fig. 1: Dependencies of the User program.

1 class SciPy: # SciPy 1.12.0:
2 def place_poles(A, B, poles):
3 return NumPy().solve(..) # Using NumPy 1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy().solve(..) # Using NumPy 2.0.0
3 NumPy().array_equal(
4 my_place_poles(A, B, poles),
5 scipy.place_poles(A, B, poles)) # => False

Fig. 2: A program that uses NumPy and SciPy in Python

with the Vython compiler. Based on these findings, we dis-
cussed how Vython could work effectively in more practical
scenarios.

The rest of the paper is organized as follows. Section 2 intro-
duces inflexible update scenarios that motivate our research, and
Section 3 offers an overview of the proposed features. Section 4
explains the semantics of the DVC mechanism, and Section 5 de-
tails the implementation of the Vython compiler. Sections 6 and
7 presents the performance evaluation and case study conducted
using the compiler. Finally, Sections 8 and 9 discuss related work
and provide concluding remarks.

2. Motivating Example
Consider a scenario where we update a User program that

reimplements a function for solving pole placement problem*2

and test its behavior against SciPy [29] implementation. Figure 1
shows the dependencies of the User program. User depends on
SciPy version 1.12.0, which indirectly depends on NumPy 1.26.4,
and User directly depends on NumPy and attempts to update it
from version 1.26.4 to 2.0.0.

As shown in Figure 2, both SciPy and User use the
solve function from NumPy*3. In User (Figure 2 bottom),
my place poles is implemented using the solve function, and
its results are compared against the existing implementation in
SciPy. place poles in SciPy 1.12.0 (Figure 2 top) directly re-
turns the result of the solve function. We try to update NumPy in
the User project.

Updating NumPy via pip
This attempt fails as follows.

1 $ pip install numpy==2.0.0
2 ERROR: scipy 1.12.0 requires numpy<1.29.0,>=1.22.4, but

you have numpy 2.0.0 which is incompatible.

The error message indicates that this attempt resulted in broken

*2 This is a common task in control theory, placing closed-
loop poles in desired locations to control the system response.
The SciPy implementation can be found at SciPy Manual.
https://docs.scipy.org/doc/scipy/reference/generated/
scipy.signal.place_poles.html (Accessed January 10, 2025)

*3 These programs are simplified, but are essentially identical to the actual
implementation. For more details, see Appendix A.2.

dependencies, as the installed SciPy is locked to NumPy versions
below 1.29.0. Similarly, other Python package managers, such as
poetry*4, rye*5, and uv*6, also conservatively reject the installa-
tion of multiple versions of the same package within the develop-
ment environment.

Updating NumPy from the Source
A potential workaround for using NumPy 2.0.0 without waiting

for SciPy updates is to use NumPy 1.26.4 for SciPy and 2.0.0 for
User independently. As mentioned earlier, while standard Python
package managers do not support the installation of multiple ver-
sions of a package simultaneously, the importlib package*7 in
the Python standard library allows dynamic switching to specific
package versions (see Appendix A.2).

However, the workaround using the importlib package in-
volves dynamically modifying module objects in sys.modules,
which can result in unpredictable program behavior due to the
subtle differences between the two or more versions of the same
module. For example, the solve implementation was incompat-
ibly changed in the NumPy 2.0.0 release. As explained in Ap-
pendix A.1, the ambiguous broadcasting rule was corrected in
2.0.0, so the solve function in the two versions may return dif-
ferent outputs even with the same input. As a result, the test
of my place poles against place poles fails, even if both im-
plementations are identical. To mitigate such unfavorable situa-
tions, re-importing NumPy through the importlib package issues
a warning due to the risk of unpredictable behavior.

1 UserWarning: The NumPy module was reloaded (imported a
second time). This can in some cases result in
small but subtle issues and is discouraged.

2 spec.loader.exec_module(numpy)

Downstream developers thus face with a dilemma: either un-
dertake the extensive refactoring work required to adapt programs
to a new version, or contend with hard-to-identify incompatibil-
ity errors while partially testing new features. The former choice
necessitates tedious tasks including reading release notes and re-
viewing the implementations of all upstream packages to iden-
tify and resolve incompatibility errors through refactoring. Al-
ternatively, the latter choice exposes programmers to limitations
in current programming language systems, which lack mecha-
nisms to detect the mixed use of incompatible implementation
versions. [27], i.e., incorrect version usage is often reported as
Python semantic errors, which fail to pinpoint the root cause
stemming from version incompatibilities.

3. Safely Use Multiple Versions in Vython
Vython is a Python subset *8 that implements the PWV update

*4 Poetry, https://python-poetry.org/ (Accessed January 10, 2025)
*5 astral-sh/rye, https://github.com/astral-sh/rye (Accessed

January 10, 2025)
*6 astral-sh/uv, https://github.com/astral-sh/uv (Accessed

January 10, 2025)
*7 importlib — The implementation of import, https://docs.python.

org/3/library/importlib.html (Accessed January 10, 2025)
*8 Current Vython does not support some Python features, and the compiler

covers about 60% of Python’s AST node types. We believe that most
unsupported features can be implemented without extra design consider-
ations. However, introducing class inheritance may require extensions to
the DVC design, making it a non-trivial task.

© 2018 Information Processing Society of Japan 2

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

1 class NumPy!1.26.4():
2 def solve(self, A, B):
3 return res

1 class NumPy!2.0.0():
2 def solve(self, A, B):
3 return res.incomp(..)

1 class SciPy!1.12.0():
2 def place_poles(A, B, poles):
3 return NumPy!1.26.4().solve(..) # Using NumPy 1.26.4

1 def my_place_poles(A, B, poles): # User Program
2 return NumPy!2.0.0().solve(..) # Using NumPy 2.0.0
3 array_equal(
4 my_place_poles(A, B, poles),
5 SciPy!1.12.0().place_poles(A, B, poles)) # => Warning!

Fig. 3: A program that uses NumPy and SciPy in Vython

model (gradual updating), which splits the burden of program
modifications caused by package updates. Vython is designed to
mitigate the version-locking problem by enabling version selec-
tion at individual code sites and provides debugging information
to help address incompatibility errors with mixed package ver-
sions through the following features:
• Using multiple versions in a code: The programmer can se-

lectively use multiple versions of a class definition by speci-
fying a version when instantiating.

• Dynamic version checking (DVC): Vython records informa-
tion about the class and its version used for creating a value,
ensuring that programs use values created with consistent ver-
sions.

Vython differentiates multiple class versions internally, allow-
ing for their selective use. As shown in Figure 3, the current
naive implementation requires version annotations in the surface
language. Additionally, DVC is intended to be enabled only in
debugging mode. Vython has a production mode that deploys
programs without runtime checks for DVC.

Vython provides a mechanism for upstream developers to
specify compatibility, which is utilized in DVC as follows.

Upstream Developer Specifies Compatibilities in Code
In Vython, upstream developers are responsible for specify-

ing incompatibilities. In NumPy 2.0.0 (Figure 3 top right), the
NumPy developer uses incompatible() (denoted as incomp()
below for brevity) to mark an expression as incompatible with
previous versions. Additionally, upstream developers can pro-
vide guidance (as shown below) to help downstream develop-
ers.*9 This information is recorded along with the class definition
in the source code.

1 [Changed in version 2.0] `NumPy().solve(a,b)`
2 - If `b` is 1-dim, it is treated as a column vector (M,).
3 - Otherwise, it is treated as a stack of (M, K) matrices.
4 [NumPy 1.26.4 and earlier]
5 - `b` was treated as a stack of (M,) vectors if `b.ndim`

equaled `a.ndim - 1`.
6 [Refactoring hint]
7 - The old behaviour can be reconstructed by using np.solve(a,

b[..., None])[..., 0]

*9 Efforts to provide incompatibility and refactoring hints are be-
yond the scope of this research and will not be explained in
this paper. The incompatibilities and refactoring hints here
are formatted information from the NumPy 2.0.0 release notes.
https://numpy.org/devdocs/release/2.0.0-notes.html#
removed-ambiguity-when-broadcasting-in-np-solve (Ac-
cessed January 10, 2025)

Notifying Downstream Developers of Incompatibility Causes
Downstream developers can follow a gradual updating model,

selectively experimenting with new features introduced in 2.0.0
while using NumPy 1.26.4 in the User program (Figure 3 bot-
tom). However, during program execution, objects from both
NumPy versions may coexist, potentially violating implicit ver-
sion assumptions of the old version of the user program. This of-
ten leads to difficult-to-diagnose errors, as discussed in Section 2.

In this situation, the downstream developer benefits from DVC
and the guidance for updates specified by the upstream developer.
The DVC mechanism reports runtime warnings on lines 3-5 in the
User program, along with the Python runtime errors.

1 ... (Python runtime errors) ...
2 Incompatible version usage found in lines 3-5:
3 - NumPy 1.26.4
4 - from place_poles() in SciPy 1.12.0
5 - NumPy 2.0.0
6 - from my_place_poles() in User
7 [Changed in version 2.0.0] `NumPy().solve(a,b)`
8 - If `b` is 1-dim, it is treated as a column vector (M,).
9 - Otherwise, it is treated as a stack of (M, K) matrices.

10 [NumPy 1.26.4 and earlier]
11 - `b` was treated as a stack of (M,) vectors if `b.ndim`

equaled `a.ndim - 1`.
12 [Refactoring hint]
13 - The old behaviour can be reconstructed by using np.solve(a,

b[..., None])[..., 0]

The Vython warning indicates that the array equal call in
lines 3-5 relies on values derived from incompatible versions of
the solve function. This warning helps downstream develop-
ers identify violations of their pre-update assumptions about the
specific version of an object, for instance, the downstream devel-
oper assumed that array equal compares values using the same
version of NumPy.solve. By following the refactoring hints pro-
vided by upstream developers, downstream developers can refac-
tor their programs to ensure compatibility with version 2.0.0. By
iterating this process, they can gradually migrate most parts of the
User program to version 2.0.0.

4. Vython Semantics for DVC
4.1 Intuition to Vython Semantics

Vython associates version information with each object and en-
sures that method return values are created from a combination of
consistent version implementations. This version information re-
flects the versions of implementation used to create the object.
Version information is recorded in a format called version ta-
ble (VT). Additionally, Vython considers any value derived from
another object created using version V as also originating from
version V . This subsection illustrates the principle behind the de-
sign decision through examples.
4.1.1 Version Tables Recorded in Objects

In Vython, all class instances will record the information of
their instantiated class and its version when it is created. For ex-
ample, the following program creates an instance of the NumPy

class in Vython, specifying version 2.0.0.

1 x = NumPy!2.0.0()

The Vython runtime with DVC records version information
in the NumPy instance, indicating that it was made from version
2.0.0 of the NumPy class. The VT of an instance of NumPy ver-
sion 2.0.0 immediately after instantiation is represented as fol-
lows.

© 2018 Information Processing Society of Japan 3

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

class NumPy
version 2.0.0
flag -

The class and version fields indicate the class and version
of the implementation used to create the value, and the flag field
indicates any incompatibility of the implementation with other
versions. Here, the flag is set to -, and the VT is simply record-
ing class and version information.
4.1.2 Version Information Propagation

At the time of returning a value from method invocation or
field access, Vython appends the version information of the re-
ceiver object to the return value. The following program performs
a method invocation on an instance of NumPy version 2.0.0 on
line 8.

1 class NumPy!2.0.0():
2 def add(self, a, b):
3 res = a + b
4 return res
5
6 x = NumPy!2.0.0()
7 a, b = 1, 2
8 y = x.add(a, b)

The version information recorded in the value created by
x.add(a, b) merges the version information of the return value
from the add method (on line 7) with the version information of
the value bound to x, as follows.

class Int NumPy
version 1 2.0.0
flag - -

Here, the records for Int and NumPy come from the VTs of the
return value of the add method and the NumPy instance bound to
x, both of which are shown below.

class Int
version 1
flag -

VT of the return value of the add
method

class NumPy
version 2.0.0
flag -

VT of the NumPy instance bound to x

4.1.3 Dynamic Version Checking
Vython checks whether the value is created using consistent

version implementations on the return values of method calls and
field accesses. If the value is created using inconsistent version
implementations, Vython considers the method call to be a usage
of potentially incompatible implementation and issues a warn-
ing to the programmer. The following program compares arrays
created by incompatible implementations of the solve method.

1 class NumPy!1.26.4():
2 def solve(self, A, B):
3 return res

1 class NumPy!2.0.0():
2 def solve(self, A, B):
3 return res.incomp(..)

1 def array_equal(arr1, arr2):
2 ..
3 arr1 == arr2
4 ...
5 a, b = [..]
6 res1 = NumPy!1.26.4().solve(a, b)
7 res2 = NumPy!2.0.0().solve(a, b)
8 array_equal(res1, res2)

As described in Section 3, in Vython, upstream developers can
use the incomp method to explicitly declare the incompatibility
introduced in version 2.0.0 of the solve function, thereby en-
couraging downstream developers to use the solve function with
caution regarding its incompatibility. The design of specifying
incompatibilities at the expression level within a method, rather
than at the method definition level, allows fine-grained incompat-
ibility specification for individual elements within a data struc-
ture. On lines 6 and 7, Vython records the following VTs for the
values bound to res1 and res2, respectively.

class NumPy . . .
version 1.26.4 . . .
flag - . . .

VT of the value bound to res1

class NumPy . . .
version 2.0.0 . . .
flag True . . .

VT of the value bound to res2

Note that the flag field is set to True for the value bound to
res2 (right). For VTs where the flag field is set to True, Vython
performs consistency checking at the return point of method
calls and field accesses. For example, on line 8, the array equal

function is called with res1 and res2 as arguments. Inside the
array equal function, on line 3, the equality of the vectors arr1
and arr2 is checked. At this point, Vython performs a consis-
tency checking on the return value of == on line 3 and outputs a
warning and refactoring hints set by the upstream developer, as
described in Section 3.
4.1.4 Difference between Vython and Existing PWV Lan-

guages
An important design decision for DVC is that the version infor-

mation of function arguments is not directly reflected in the return
value. This design decision leads to differences in consistency-
checking capabilities compared to the existing PWV languages.
For example, in cases where an argument is merely discarded dur-
ing the function body, the version information of the argument is
not propagated into the version information of the return value.

1 class A!1.0.0(): ..
2 class A!2.0.0(): ..
3 class Choose!1():
4 def discard_snd(self, fst, snd):
5 return first
6
7 c = Choose!1.0.0()
8 x = c.discard_snd(A!1.0.0(), A!2.0.0())

As shown in line 5, the discard snd method does not use
snd in the actual computation, and therefore, the VT of the return
value does not include the VT of the second argument. On the
other hand, existing PWV languages such as VL [26], [27], [28]
and BatakJava [19] conservatively reflect the version information
of arguments in the return value.

Another interesting aspect of DVC is path sensitivity.

1 class A!1.0.0(): ..
2 class A!2.0.0(): ..
3 if rand():
4 x = A!1.0.0()
5 else:
6 x = A!2.0.0()
7 y = x

With the DVC mechanism, the recorded version information
in the value bound to y in line 7 is only the one associated with
the path actually taken. Therefore, upon the completion of the
above program’s execution, the VT of the value assigned to y is

© 2018 Information Processing Society of Japan 4

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

the lower left VT if the then branch is executed, and lower right
VT if the else branch is executed, as shown below.

class A
version 1.0.0
flag -

through then branch

class A
version 2.0.0
flag -

through else branch

In contrast, in existing PWV languages, a type-system-based
analysis is performed for the above example; that is, the analy-
sis enforces the result where the versions (and types) of the then
and else branches completely match (meet), or become the join
of both.

4.2 The Vython Semantics
This section presents the Vython semantics, which are defined

through DVC functions over VT. Before detailing the DVC ex-
tensions applied to the underlying Python semantics, we begin by
defining version tables.
4.2.1 DVC Functions for VT

We define VT as follows.

Definition 4.1 (Version Tables). A version table (VT) is a set
of triples {(C,V, f)}, where C represents the class, V represents
the version associated with a constructor, method, or field im-
plementation, and f represents the flag that can take the value −
or T (standing for True). f indicates incompatibility with other
versions of the implementation when f = T.

Note that each VT does not have duplicate triples and the order
of recording triples does not relate to the meaning of the VT.

Next, we define DVC functions for VTs. All operations on the
VT are performed using the following functions.

Definition 4.2 (DVC functions). The mk function takes a class
name C, a version number V , and a flag f , and creates a VT of
size 1. The join function takes multiple VTs and creates a union
set of VTs. The wf function takes a VT and checks whether the
VT is well-formed or not.

mk(C,V, f) = {(C,V, f)} join(vt1, vt2) = vt1 ∪ vt2

wf(vt) =


incomp ∃V1,V2. V1 , V2

∧ (C,V1,T) ∈ vt
∧ (C,V2, f) ∈ vt

comp otherwise

Here, incomp indicates that the value with the associated VT
was produced by a computation involving a value originating
from an incompatible class. At the implementation level, a warn-
ing is issued at the time when wf is called. Conversely, comp indi-
cates that the value associated with the VT is derived from values
generated with consistent class versions, allowing evaluation to
proceed without any warnings.

To aid the reader’s understanding, we provide several examples
using DVC functions.

Example 4.1 (VT operations (join and mk)).

join(mk(NumPy, 2.0.0,T),mk(NumPy, 2.0.0,T))

= {(NumPy, 2.0.0,T)}

join(mk(NumPy, 2.0.0,T),mk(NumPy, 2.0.0, -))

= {(NumPy, 2.0.0,T), (NumPy, 2.0.0, -)}

join(mk(NumPy, 2.0.0,T),mk(Array, 1.0.3, -))

= {(NumPy, 2.0.0,T), (Array, 1.0.3, -)}

Example 4.2 (VT consistency checking (wf)).

wf({(NumPy, 2.0.0,T), (NumPy, 2.0.0, -)}) = comp

wf({(NumPy, 2.0.0,T), (NumPy, 1.26.4, -)}) = incomp

wf({(NumPy, 2.0.0,T), (NumPy, 1.26.4,T)}) = incomp

4.2.2 The Vython Semantics Using DVC Functions
Using DVC functions, we define the Vython semantics. The

current Vython is a minimal object-oriented language because it
lacks support for abstract classes, interfaces, class inheritance,
and method overriding.

To highlight VT operations, we present the big-step operational
semantics as an extension of standard object-oriented language
semantics like Featherweight Java [13] in a somewhat informal
manner. Figure 4 illustrates an excerpt of the Vython seman-
tics. The meta-variables t, v, C, m, and f represent terms, values,
method names, and field names, respectively. The meta-functions
fields and mbody represent the lookup of field names and method
arguments with their bodies for a given class. Method calls t.m()
and field accesses t. f follow the standard notation, but note that
C!V(ti) and C(vi) denotes instance creation (term) and class in-
stance (value).

Furthermore, while the syntax allows the incompatible tag
t.incomp(C,V) to be applied to any terms, we assume it will be
used specifically in the return statements of methods or construc-
tors. The arguments C and V represent the class and version in
which the method or constructor is defined, and they are expected
to be automatically inserted during the compiler’s preprocess.*10

As discussed in Section 4.1, (E-Field) and (E-Invk) follow
similar patterns since both field accesses and method calls involve
accessing an instance’s attributes. The VT of a method call’s re-
turn value is determined by concatenating the VTs recorded in
two components: the method’s return value and the receiver ob-
ject. Similarly, the VT for a field access result is derived by con-
catenating the VTs recorded in the field-assigned value and the
target object. Lastly, both rules include a consistency check us-
ing wf.

(E-BuiltinOp) defines the rule for VT operations on built-
in type values, such as boolean and numerical operations. In
Vython, these operations are treated differently from method
calls, as they are considered computations that always use the
argument values. Therefore, the VTs of all arguments are joined
into the VT of the resulting value.

(E-Incomp) defines the VT semantics for the incompatibility
tag. The incomp function is the only mechanism for assigning the

*10 The current Vython compiler does not yet support this feature. In the
current implementation, incomp calls require both C and V in a surface
program.

© 2018 Information Processing Society of Japan 5

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

Vython semantics t ⇓ v

t ⇓ v v = C(vi)
fi ∈ fields(C) vt = v.get()

t.fi ⇓ vi .setwf
∪ (vt)

(E-Field)
ti ⇓ vi vt = mk(C,V,−)

C!V(ti) ⇓ C(vi) .set(vt)
(E-New)

t ⇓ v vt = mk(C,V,T)

t.incomp(C,V) ⇓ v.set∪(vt)
(E-Incomp)

t ⇓ v v = C(. . .) ti ⇓ vi mbody(m,C) = (xi, tb)
tb[vi/xi] ⇓ v′ vt = v.get()

t.m(ti) ⇓ v′ .setwf
∪ (vt)

(E-Invk)

op ∈ BuiltinOp op(v1, v2) = v
vt1 = v1.get() vt2 = v2.get()

op(v1, v2) ⇓ v.set∪(vt1).setwf
∪ (vt2)

(E-BuiltinOp)

where v.setwf
∪ (vt) ≜ vt′ ← join(vt, v.get()); wf(vt′); v.set(vt′)

v.set∪(vt) ≜ vt′ ← join(vt, v.get()); v.set(vt′)

Fig. 4: An excerpt of the Vython semantics with the highlight of VT operations. get and set are getters and setters for the VT of each
object, and they are assumed to be defined in all classes. BuiltinOp represents the set of operators (op) for Python’s built-in types,
such as +, or, and =, etc. The operator op also is a meta-level function for constant objects v1 and v2. For example, when op = +,
op(Int(1), Int(2)) = Int(3) that has an empty VT.

Vython
Program

Vython
AST

Version
Space

Limited
Version Space

Python AST
w/ DVC Functions

DVC
Functions

Parse

CompileGenerate & optimize

Restrict by user intention

Fig. 5: Compilation flow of the Vython compiler.

T flag, which triggers consistency checking at a wf call. In con-
trast, (E-New) specifies the VT to be recorded for a newly created
class instance, recording a mk(C,V,−). Unlike (E-Incomp), the
attached checker flag here is −, meaning it only records version
information without triggering DVC except in the cases where
computations involve values with T flag assigned by incomp.

5. Implementation
5.1 The Vython Compiler

We implemented the Vython compiler which translates the
Vython program into the Python program. In the Python
programs generated after compilation, the DVC mechanism is
achieved by representing a VT as an attribute of each object and
operating and checking VTs by predefined DVC functions, which
are inserted against class methods, field accesses, and class in-
stantiation. Since we treat all values as objects, Vython literals
are compiled into predefined Python classes.

Figure 5 shows the compilation flow of the Vython compiler.
First, the Vython program is parsed into a Vython AST using the
parser library lark*11. During parsing, the compiler extracts ver-
sion information for classes and constructs version space (avail-
able class and version pairs) globally. Programmers can further
restrict the size of version tables by specifying the classes they

*11 lark-parser/lark, https://github.com/lark-parser/lark
(Accessed January 10, 2025)

1 class A!1.0.3():
2 def __init__(self, value):
3 self.value = value
4 def get(self):
5 return self.value

(a)

1 class A_v_1_0_3:
2 def __init__(self, value):

3 self.vt = 1
4 self.value = value
5
6 @ vt invk
7 def get(self):

8 return vt field(self, self.value)
9 ..

10 def _vt_invk(func):
11 def wrapper(*args, **kwargs):
12 result = func(*args, **kwargs)
13 if result is not None:

14 result = vt join(result, args[0])

15 if not vt well formed(result):
16 _issue_warning(result, args[0])
17 return result
18 return wrapper
19 def _vt_field(receiver, result):

20 result = vt join(result, receiver)

21 if not vt well formed(result):
22 _issue_warning(result, receiver)
23 return result

(b)

Fig. 6: Simple Vython program (a) before and (b) after compila-
tion.

want to use with multiple versions as input to the compiler. The
limited version space is then used to generate DVC functions. Fi-
nally, the Vython AST is compiled into Python AST, along with
the insertion of generated DVC functions.

The Vython compiler inserts DVC functions by each evalua-
tion rule. Figure 6 illustrate a program before and after compila-
tion for a class A version 1.0.3, which only includes getter get.
As shown in line 6 of Figure 6(b), the VT operation for method
calls is implemented through the decorator function vt invk,
and the VT operation for field accesses is implemented through
vt field in line 8. Additionally, as shown in line 3, the con-

© 2018 Information Processing Society of Japan 6

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

structor bit-encodes the initial VT and assigns it to the vt field
(mk).

Among the implementation functions introduced so far, we will
use the implementation of vt invk, which corresponds to (E-
Invk), as an example to explain. When a method with this deco-
rator is invoked, the vt invk function performs VT operations
according to (E-Invk). First, the method is executed in line 12.
Then, VT propagation to the return value is handled by vt join

(join) in line 14, and the VT consistency of the return value is
checked by vt well formed (wf) in line 15.

5.2 Optimization
To avoid the significant runtime overhead anticipated, Vython

compiles VTs into bit sequences and DVC functions into combi-
nations of bitwise operations.
5.2.1 Encoding VTs as Bit Sequences

Algorithm 1 shows the algorithm for encoding a VT into a bit
sequence. The algorithm takes as input the version spaceV (lim-
ited in size by the user) and the vt to be encoded, and outputs the
bit sequence representation of vt underV.

Note that the current implementation of Vython is restricted to
two versions per class within a program. This limitation is based
on the assumption that, in most cases, programmers are primarily
concerned with compatibility between two specific versions. By
leveraging this assumption, a bit-encoded VT is a bit sequence
whose length is equal to four times the number of classes in the
limited version space. Every grouped set of four bits records what
version of a certain class was used to create the value.

For example, consider a program whose resulting limited ver-
sion space consists of NumPy versions 1.26.4 and 2.0.0.

Example 5.1 (Bit-encoded VT). The following version table is
encoded into the bit sequence 1101 under the version space
{NumPy 7→ [1.26.4, 2.0.0]}.

class NumPy NumPy NumPy
version 2.0.0 2.0.0 1.26.4
flag True - -

The length of the bit sequence encoding the VT, |b| in Algo-
rithm 1, is 4. The first, second, third, and fourth bits correspond
versions 1.26.4 with flag −, 1.26.4 with flag T, 2.0.0 with flag −,
and 2.0.0 with flag T, respectively. Following the three elements
contained in the version table, the encoding algorithm returns a
bit sequence 1101 with the first, third, and fourth bits set to 1.
5.2.2 Encoding Helper Functions as Bitwise Operations

Along with the encoding of VT into a bit string, DVC func-
tions are also encoded into bitwise operations. The three DVC
functions, mk, join, and wf are represented using bitwise opera-
tions as follows.

Definition 5.1 (DVC functions (bit-encoded)).

*12 In the expression Ci 7→ [Vi j] and Vi j, the bar notation is introduced as
a shorthand to explicitly indicate the indexing of elements in an iterable
set or vector. Specifically, it abbreviates the typical right-hand side of
a set comprehension by making explicit that each element is associated

with a specific index within the collection. For example, {Ci 7→ [Vi j]} is
an abbreviation for the set comprehension {Ci 7→ [Vi j] | i ∈ S et}.

Algorithm 1: VT Encoding Algorithm
Data:
• V: Limited version space, a map from class names to available

versions {Ci 7→ [Vi j]} *12 (Note: V[Ci] denotes the set of available
versions for class Ci.)

• vt = {(Ci,Vi j, fi) | Ci ∈ dom(V),Vi j ∈ V[Ci], fi ∈ {T,−}}
Result: A bit sequence b representing the vt underV.

1 begin
2 |b| ← 2 ×

∑
C∈dom(V) |V[C]|;

// |V[C]| = 2 in our assumption

3 for i← 0 to |b| − 1 do
4 b[i]← 0;

5 foreach (Ci,Vi j, fi) ∈ vt do
6 offset ← 2 × (j +

∑i−1
k=0 |V[Ck]|);

// |V[Ck]| = 2 for any k in our assumption

7 if fi = T then
8 index← offset + 1;

9 else if fi = − then
10 index← offset;

11 b[index]← 1;

12 return b;

mk(C,V, f) = ⟦{(C,V, f)},V⟧bit

join(ˆvt1, ˆvt2) = ˆvt1 | ˆvt2

wf(v̂t) =


incomp (((v̂t≫ 1) & v̂t)≫ 1

| (v̂t≫ 3) & v̂t)
& mask , 0

comp otherwise

where mask is a bit sequence of the form (0001)+,

V is a limited version space,

and v̂t represents the bit-encoded vt.

The mk function is compiled into a bit sequence determined
by ⟦∗⟧bit, the encoding function defined in Algorithm 1. This
function is evaluated at compile time, producing hard coded bit
sequences in the Python AST, thus incurring no runtime overhead
with ⟦∗⟧bit. The join function is simply compiled into a bitwise
OR operation (|).

Compared to the other two DVC functions, wf is less straight-
forward and requires a detailed explanation. The purpose of wf is
to detect when a VT element (C,V1,T) exists and another element
(C,V2, f) is present in the input VT, where V2 , V1 and f can be
either T or −, returning incomp as a result. Assuming each class
has only two versions, this detection corresponds to recognizing
one of the following bit patterns.
• 1 1

• 1 1

• 1 1

Furthermore, we focus on (E-Incomp), which, as previously
noted, is the sole mechanism for assigning the T flag, and opti-
mizing its behavior at the implementation level. As defined in
Definition 4.2, if a VT element (C,V1,T) exists in vt, adding
(C,V1,−) – an element with the same class name and version
name – to vt does not affect the results of the wf functions with

© 2018 Information Processing Society of Japan 7

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

insert sort is_prime fib sieve
Algorithm

0

20

40

60

Av
er

ag
e

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 p
yt

ho
n

python
(baseline)

wf (vython)
join
mk
wrap-literal

20 21 22 23 24 25 26 27 28 29 210 211

Number of entries in a version table
0

10

20

30

40

50

Av
er

ag
e

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 p
yt

ho
n

python
(baseline)

wrap-literal
mk
join
wf (vython)

Fig. 7: Overhead of DVC functions in Vython (left) for simple algorithm benchmarks and (right) for repeating additions 2000 times with
the number of VT entries.

other VT elements, such as (C,V2, f). Accordingly, Vython im-
plements (E-Incomp) with vt = join(mk(C,V,T),mk(C,V,−)) in
the premise.

By leveraging this optimization, the bit pattern 1 1 will al-
ways simplify to 1 1 1 1, which is subsumed by the other two pat-
terns. Therefore, it suffices to detect the following two patterns:
• 1 1

• 1 1

To achieve this, the 1 1 pattern is detected by
(((vt ≫ 1) & vt) ≫ 1) & mask , 0, and the 1 1 pattern
is detected by ((vt ≫ 3) & vt) & mask , 0. Further optimization
is performed to eliminate redundant operations, resulting in the
current wf definition in Definition 5.1.

6. Performance Evaluation
We conducted preliminary experiments on runtime perfor-

mance. This performance evaluation focuses on the overhead
introduced by DVC in Vython’s debugging mode. In contrast,
the production mode (without the DVC feature) incurs no addi-
tional runtime cost, as it simply executes a Python program where
multiple class versions are distinguished by their names.

6.1 Settings
We ran the following two benchmarks and calculated the aver-

age over 1000 iterations. The experiments were conducted with
Python 3.12.1 on an Intel Core i5-10400F running Windows 11
23H2.
Benchmarks
• Simple Algorithm: Vython programs implementing four

simple algorithm insert, sort, fib, sieve, and is prime*13 us-
ing a VT with a maximum of two entries.

• Scalability: a Vython program that repeats additions 2000
times, with the number of VT entries doubling from 20 to
211.

The five algorithm in the simple algorithm benchmark were
chosen to examine the overhead trends of the DVC feature in
programs that can be written using the current Vython. insert
and sort rely heavily on user-defined class instances, whereas fib,
sieve, and is prime do not.

Each benchmark examines where the overhead occurs by dis-

*13 Please see Appendix A.3 for the implementation of each benchmark pro-
gram.

abling certain VT operations through the following Vython com-
piler options.
Compiler options
(1) python: baseline, production mode.
(2) wrap-literals: compiling literals as with VTs.
(3) mk: (2) + VT Initialization at instantiations.
(4) join: (3) + VT propagation.
(5) wf (vython): (4) + consistency check.

6.2 Result and Discussion
In this subsection, we present and discuss the performance

evaluation results for simple algorithm and scalability bench-
marks.
6.2.1 Simple Algorithm
Result

Figure 7 (left) shows the execution times of simple algo-
rithm relative to python. Focusing on each algorithm’s case wf
(vython), the program dominated by method calls to user-defined
class instances, such as insert and sort, exhibit an overhead
mostly within 20 to 30 times. In contrast, programs dominated
by arithmetic or boolean operations, such as fib and sieve, show
a larger overhead ranging from 60 to 70 times.

Focusing on individual DVC functions, it is evident that wrap-
literals and join exhibit significant overhead across benchmarks.
These two DVC functions account for 80% of the overhead in
sort, is prime, fib, and sieve.

Compared to other dynamic analysis tools for Python (i.e. Dy-
naPyt [9]), which generally exhibit an overhead of up to 20x, the
current overhead of Vython is not practically acceptable and re-
quires further optimization.
Discussion on the Overhead by wrap-literals

The current Vython attaches VT to all Python primitive values,
even when they are involved in computations entirely unrelated to
the classes of interest to the programmer. This negates bytecode
optimizations for constant calculations.

Overhead can be reduced by discontinuing compile-time literal
wrapping and instead performing dynamic casts only when com-
putations interact with classes in the version space. An ad-hoc im-
plementation of this approach is marking pure Vython functions
with the @pure annotation and enclosing them in a try-catch

block. When a DVC function is invoked on a Python value, any
resulting error is caught and used to cast the value to a Vython

© 2018 Information Processing Society of Japan 8

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

insert sort is_prime fib sieve
Algorithm

0

5

10

15

20

Av
er

ag
e

ex
ec

ut
io

n
tim

e
re

la
tiv

e
to

 p
yt

ho
n

python
(baseline)

wf (vython)
join
mk
wrap-literal

Fig. 8: Overhead of DVC functions in Vython for simple algo-
rithm benchmarks with dynamic literal casts.

value.
Figure 8 shows the results of a simple algorithm benchmark us-

ing this ad-hoc compilation method. The results demonstrate that,
apart from insert, which could not be annotated with @pure due
to its reliance on destructive updates, all benchmarks achieved
performance comparable to python.

Another possible approach to reducing overhead is unboxing
optimization, which replaces computations on boxed objects with
equivalent operations on lightweight, unboxed values. Applying
this to Vython is expected to significantly reduce the number of
extractions from and insertions into wrapper class instances dur-
ing primitive value computations.
Discussion on the Overhead by join

The current approach performs join on every field access,
method call, and built-in operation. By incorporating static anal-
ysis, to compose DVC functions, we believe it will be possible
to omit most join. The details of this idea are discussed in Sec-
tion 8.2.
6.2.2 Scalability

Figure 7 (right) shows that overhead does not increase signifi-
cantly as the VT size grows. However, it is notable that the over-
head only for wf (red line) shows an increase around a VT size of
29 − 211.

It is difficult to determine the number of class versions that
must be considered in practical application update scenarios. As
discussed in Section 5, the version space determining the maxi-
mum VT size can be managed and reduced by the programmer.
However, updating a class may necessitate including additional
upstream classes in its dependency.

Therefore, while additional case studies are necessary to con-
firm that the VT size remains manageable for practical scenarios,
the results indicate that Vython debugging mode is scalable, par-
ticularly for non-large-scale applications.

7. Case Study
In the case study, we implement Keyword In Context (KWIC)

according to the second modularization criteria presented by Par-
nas [24], and verify incompatible updates in downstream pro-
grams that use it. The KWIC implementation creates a dictionary
that includes the context in which each word is used, as shown
below.

1 "reverse-engineering weep ReLU networks"
2 "My Fair Bandit: Distributed Learning of Max-Min Fairness

User

Integrate

Input

RotateSort

Output

LineStore

String

Fig. 9: Class dependency diagram.

with Multi-player Bandits"
3 "Scalable Differentiable Physics for Learning and Control"

KWIC input (ICML paper titles)

1 2 ferentiableScalable|andControl
2 1 FairMy|Bandit:Distrib
3 1 ibutedBandit:FairMy|Bandits
4 2 ferentiableScalable|Control
5 2 Scalable|Differentiable
6 1 Bandit:FairMy|DistributedLea
7 1 My|FairBandit:Dis
8 1 ibutedBandit:FairMy|FairnesswithMu
9 2 ferentiableScalable|forLearningand

KWIC output

7.1 Settings
We outline the experimental setup for the KWIC case study.

We describe the overall class structure and program, as well as an
update scenario in which selected call sites transition from ver-
sion 1 to version 2 of the String class.
Class Structure

Figure 9 shows the class dependencies of the KWIC imple-
mentation. We define that class A depends on class B if class A’s
definition includes at least one of the following: a B instantia-
tion, a method call of a B object, or field access of a B object.
When class A depends on class B, any modifications to class B
necessitate a code review of class A’s implementation.*14 We im-
plemented Parnas’s module structure as individual classes shown
in Figure 9. Additionally, we introduced the String class, which
assumes standard library APIs and was implicitly used by each
module in the original paper. The roles of the other classes re-
main the same as described in the original paper.

KWIC Implementation
Figure 10 shows the definition of a series of classes for

implementing KWIC. Passing a list of String classes to
Integrate.main() will output the corresponding KWIC index.
These classes are implemented using version 1 of the String

class. Notably, in the sort method of the Sort class, the pro-
gram processes words one letter at a time, converting lowercase
letters to uppercase. For further implementation details, please
refer to the published GitHub repository.*15

*14 It is important to note that the absence of a direct dependency from class
A to class B does not guarantee that a review is unnecessary when class
B is updated. Identifying such implicit errors is the purpose of DVC.

*15 prg-titech/kwic-vython, https://github.com/prg-titech/
kwic-vython (Accessed January 10, 2025)

© 2018 Information Processing Society of Japan 9

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

1 class LineStore!1():
2 def __init__(self):
3 self.rows = []
4
5 def set_char(self, row, word, offset, char):
6 current_word = self.get_word(row, word)
7 while offset >= len(current_word):
8 current_word.append("")
9 current_word[offset] = char

10
11 class Input!1():
12 def input(texts):
13 line_store = LineStore!1()
14 for row_i in range(len(texts)):
15 line = texts[row_i]
16 split_line = line.split()
17 for word_i in range(len(split_line)):
18 word = split_line[word_i]
19 for char_i in range(word.size()):
20 line_store.set_char(row_i, word_i, char_i, word.

get(char_i))
21 return line_store
22
23 class Rotate!1():
24 def __init__(self, line_store):
25 self.line_store = line_store
26 self.shift_table = []
27 for row in range(line_store.num_rows()):
28 for word in range(line_store.num_words(row)):
29 self.shift_table.append((row, word))
30
31 class Sort!1():
32 def __init__(self, rotate):
33 self.rotate = rotate
34
35 def first_shift_to_str(self, shift):
36 keyword = String!1("")
37 for char_i in range(self.rotate.num_chars(shift, 0)):
38 char = (self.rotate.get_char(shift, 0, char_i))
39 if String!1("a").get(0) <= char <= String!1("z").get

(0):
40 char = chr(char - 32)
41 keyword.add(String!1(char))
42 return keyword
43
44 def do_sort(self):
45 self.row_indices = sorted(
46 range(self.rotate.num_rows()),
47 key=lambda r: self.first_shift_to_str(r),
48)
49 return self
50
51 class Output!1:
52 def __init__(self, sort):
53 self.sort = sort
54
55 def output(self):
56 ..
57
58 class Integrate!1:
59 def main(self, titles):
60 line_store = Input.input(titles)
61 rotated = Rotate(line_store)
62 sorted_rotate = Sort(rotated).do_sort()
63 Output(sorted_rotate).output()

Fig. 10: Classes for KWIC

Update Scenario
We define an update scenario for the downstream User’s pro-

gram which uses the KWIC implementation as follows. Initially,
the User program relied on only version 1 of the String class.
However, a requirement arises to use a new method introduced
include pattern in version 2 of the String class for a specific
process, while keeping the use of the KWIC implemented using
version 1 of the String class. Therefore, the downstream pro-
grammer selectively updates some of the call sites of the String
class in their program to use version 2.

Figure 11 shows the definitions of version 1 (top) and ver-
sion 2 (bottom) of the String class. The update introduces
two incompatible changes: (1) the addition of a new method,
include pattern, for checking the existence of a substring that

1 class String!1():
2 def __init__(self, value):
3 if type(value) == int:
4 self.value = chr(value)
5 elif type(value) == str:
6 self.value = value
7
8 def get(self, i):
9 if(i < 0):

10 return 0
11 if(len(self.value) <= i):
12 return 0

13 return ord(self.value[i])

1 class String!2():
2 def __init__(self, value):
3 if type(value) == int:
4 self.value = chr(value)
5 elif type(value) == str:
6 self.value = value
7
8 def get(self, i):
9 if(i < 0):

10 return 0
11 if(len(self.value) <= i):
12 return 0

13 return self.value[i].incomp(String, 2)
14
15 def include_patter(self, regex):
16 ..

Fig. 11: Class String before and after update

1 ..
2 titles = [String!2("reverse-engineering␣weep␣ReLU␣

networks"), String!2("Hi"), String!2("Reverse-
engineering␣deep␣ReLU␣networks")]

3 Integrate().main(titles)
4 ..
5 # operation using newly introduced method in version 2 of

the String class
6 .. title.include_pattern(r'..') ..

Fig. 12: Updated Downstream User’s Program

matches a given regex, and (2) a modification to the behavior of
the get method, which retrieves the character at a specified in-
dex. In the original implementation, self.get(i) returned the
character code of the ith character in the string stored in self.
After the update, it instead returns a single-character string. No-
tably, this incompatibility is intended to replicate the real-world
incompatibility for String#[] introduced in Ruby 1.9.0 in the
process of multilingualization (Ruby M17N). *16 *17

Downstream User’s Program
Figure 12 shows the user program after the gradual update; the

part that originally used version 1 of the String class has been
selectively updated to use version 2 of the String class, as shown
in line 2. In line 3, a list of String!2 instances is passed to the
main method of the Integrate class, which outputs the KWIC
index corresponding to the given list.

*16 ruby/doc/NEWS at ruby/ruby · v1 9 0 0, https://github.com/
ruby/ruby/blob/v1_9_0_0/doc/NEWS#L13 (Accessed January 10,
2025)

*17 Regarding the behavioral differences related to this incompatibility,
please refer to the NEWS (an overview of the ChangeLog file for a new
Ruby version) of the subsequent stable release, version 1.9.1. NEWS for
Ruby 1.9.1 - Compatibility issues https://docs.ruby-lang.org/
en/3.4/NEWS/NEWS-1_9_1.html (Accessed January 10, 2025)

© 2018 Information Processing Society of Japan 10

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

7.2 Gradually Updating KWIC in Vython
Inconsistent Version Usage in Sort

When we execute the updated user program in Figure 12, a
value derived from the get method for a String!2 instance is
assigned to the char in line 38 in Figure 10. Then, at the execu-
tion of line 39, where char is passed to the inequality operation,
the following message is notified by both Python runtime and
DVC.

1 TypeError: '<=' not supported between instances of 'int'
and 'str'

Error Message from Python Runtime

1 Incompatible version usage found:
2 - String 1
3 - String 2
4 [Changed in version 2] `String().get(i)`:
5 - returns a string whose length is 1 consisting of the i-

th character.
6 - but returns the character code of the i-th character in

version 1.

The Waring Issued from DVC

Here, Python runtime reports that its inequality opera-
tions are performed on a combination of values with differ-
ent types (int and str). Specifically, the evaluating value of
String!1("a").get(0) has a type of int, and the evaluating
value of char has a type of str.

DVC reports that its inequality operations are performed on
a combination of values created from an incompatible version
of the implementation. Specifically, the evaluating value of
String!1("a").get(0) has a VT of {(String, 1, -),..} and the
evaluating value of char has a VT of {(String, 2, T),..}. Ad-
ditionally, DVC also reports how these values can be incompat-
ible. By combining this information, we identify the cause of
the program’s failure: the implementation assumes that the return
value of the get method from the version 1 String class (an int
value) is assigned to a char. However, due to the update, the re-
turn value of the version 2 get method (a char value) is being
assigned instead.

1 class Sort!1:
2 ..
3 def first_shift_to_str(self, shift):
4 keyword = String!1("")
5 for char_i in range(self.rotate.num_chars(shift, 0)):
6 char = self.rotate.get_char(shift, 0, char_i)

7 if String! 2 ("a").get(0) <= char <= String! 2 ("z").
get(0):

8 char = chr(char - 32)
9 keyword.add(String!1(char))

10 return keyword

Refactored Definition of first shift to str: 1

This cause analysis leads to a program revision, as exemplified
in the above program. We refactor the program by changing the
version of get method from version 1 to version 2 in the inequal-
ity operation. Then, executing the programs with this refactored
program, the following results were produced.

1 TypeError: unsupported operand type(s) for -: 'str' and
'int'

Error Message from Python Runtime

The Python runtime raises an error at line 40 of Figure 10.

This error reports that an int type value and a str type value
were passed as operands to a subtraction operation. Specifically,
the evaluating value of 32 has a type of int, and the evaluating
value of char has a type of str.

However, no error is reported by the DVC mechanism in this
case. This is because the return value of the version 2 get method
assigned to char and the naive integer value 32 seem to be ver-
sion consistent.

1 class Sort!1:
2 ..
3 def first_shift_to_str(self, shift):
4 keyword = String!1("")
5 for char_i in range(self.rotate.num_chars(shift, 0)):
6 char = self.rotate.get_char(shift, 0, char_i)
7 if String!2("a").get(0) <= char <= String!2("z").get

(0):

8 char = chr(ord(char) - 32)
9 keyword.add(String!1(char))

10 return keyword

Refactored Definition of first shift to str: 2

Therefore, in this case, we refactor the program as described
above based solely on information provided by the Python run-
time, without any feedback from the DVC mechanism. Specif-
ically, we refactored the program to perform the subtraction of
character codes using the ord method to explicitly obtain the
character codes.

Executing the programs with this refactored program, it out-
puts the correct KWIC index as same as before an update along
with countless warnings from Vython. However, these warnings
are due to DVC’s conservative design, and the results confirm that
there is in fact no problem. Thus, we successfully completed the
update of the downstream User’s program from version 1 of the
String class to version 2.

7.3 Discussion
Through this case study, we demonstrate that Vython with

DVC can support gradual updates. However, several limitations
were also observed. For instance, during the execution of the
program after the first refactoring, DVC did not issue any warn-
ings about a type error caused by version-related incompatibili-
ties. While such issues fall outside the current scope of DVC, they
represent a class of problems that are likely to occur frequently in
practice due to version incompatibilities. It will be necessary to
extend DVC to address these structural incompatibility issues.

The current implementation of DVC is not able to identify
which evaluation step each version information was attached in
when inconsistent version information is detected. In addition to
reporting inconsistency, it would be more helpful to be able to
report what piece of program caused the inconsistency.

Moreover, unlike static compatibility checking such as VL [27]
and BatakJava [19], we recognize that DVC is ineffective against
refactoring source code outside the execution path. Therefore, it
would be challenging to migrate the entire source code follow-
ing the gradual updating model using DVC alone. Considering
that Python also has a lightweight typing mechanism*18, explor-
ing static mechanisms for dynamic languages could be a reason-

*18 PEP 484 - Type Hints https://peps.python.org/pep-0484/ (Ac-
cessed January 10, 2025)

© 2018 Information Processing Society of Japan 11

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

able direction for future work.

8. Related Work
8.1 Language-Based Approach Using Multiple Version in a

Program
Programming with Versions is a programming paradigm pro-

posed by Tanabe et al. that enables the use of multiple versions
of packages, modules, or classes within a program, facilitating
gradual updates. They highlight the incompatibility issues that
arise when multiple versions of functions or classes coexist in a
program and emphasize the importance of handling version con-
sistency [27], [28] and structural compatibility [19] in their lan-
guages.
λVL [26], [27] is a functional core calculus with a type

system that ensures version consistency. Its implementation,
VL [28], enables the automatic selection of function versions us-
ing consistency-based type inference. On the other hand, Batak-
Java [19] is an extension of Featherweight Java [14] with a type
system that ensures structural compatibility. Through Batak-
Java’s type inference, the version of the class used for all instance
creations is automatically determined. Programs that pass Batak-
Java’s type inference are guaranteed to avoid method call or field
access failures caused by version incompatibilities. Vython can
be viewed as a dynamic checking mechanism that ensures ver-
sion consistency. Exploring language extensions to guarantee
structural compatibility presents an interesting direction for fu-
ture work.

Carvalho and Seco propose a mechanism that allows version
updates of programs to be expressed within the programming
language itself, from the perspective of software evolution. Ver-
sioned Featherweight Java [5], [7] is an extension of Feather-
weight Java that introduces multi-branching and merge opera-
tions. Using program slicing, it extracts a well-typed single-
version Featherweight Java code from a version-controlled code-
base at compile time. They have also implemented a similar ap-
proach for Python [6], reducing the effort required for refactoring
by automatically inserting some compatibility-absorbing code at
compile time. While this approach cannot execute programs in-
volving incompatible versions without pre-defined conversions,
Vython allows programmers to run programs with any version
combination and has a mechanism that dynamically detects is-
sues arising from incompatibilities.

8.2 Dynamic Analysis Tools With an Implementation Simi-
lar to Vython

Some offline tools performing dynamic checks exhibit
implementation methods that are partially similar to DVC.
TaintCheck [23] is a dynamic analysis tool built on Valgrind [22],
designed to detect vulnerabilities such as buffer overflows
and format string exploits. TaintCheck marks input data from
untrusted sources as tainted, tracks the propagation of tainted
attributes during program execution (i.e., identifying which other
data becomes tainted), and detects instances where tainted data
is used in unsafe operations.

Similar approaches are found in the literature on dynamic in-
formation flow analysis. Austin and Flanagan [2], [3] introduced

the semantics of λinfo [1], a variant of lambda calculus designed
to derive the evaluation rules for Featherweight JavaScript, a sub-
set of JavaScript. This calculus assigns security labels to values
and dynamically verifies these labels to prevent the leakage of
sensitive information by malicious JavaScript programs.

While these tools differ in purpose from Vython, they share
a key characteristic: attaching metadata to values and defining
how this metadata propagates. In Vython, version tables are used
in place of security labels. These tools have been reported to
incur runtime overheads ranging from several times (as seen in
λinfo) to as much as 25 times (as observed in TaintCheck) com-
pared to implementations without additional checks. Although
the level of optimization varies significantly, incorporating tech-
niques such as sparse labeling—used in λinfo to minimize the ad-
dition of check metadata—could potentially enhance the perfor-
mance of Vython.

8.3 Dynamic Software Updating
Dynamic Software Updating (DSU) [12], [15], [21] is a tech-

nique that enables software to be updated while it is running. In
DSU, different versions of programs may be executed consecu-
tively, and objects created by the old version may be passed to the
new one. This scenario resembles the Programming With Ver-
sions paradigm, where multiple program versions are executed
simultaneously. To prevent destructive behavior arising from in-
compatibilities between different versions, existing DSU systems
employ various strategies. For instance, some systems restrict
update timing (e.g. updating functions only when they are inac-
tive) [12] and perform state transformations on objects created
by the old program to make them compatible with the new pro-
gram [21].

Although DSU and DVC serve different purposes, both require
techniques to ensure that compatible versions are used consis-
tently during execution. This overlap suggests that techniques
from DSU and DVC could be mutually beneficial. For instance,
integrating DVC into DSU might allow for the early detection of
harmful dynamic updates, thereby improving overall system sta-
bility.

9. Conclusion and Future Work
We implement Vython and conduct a preliminary evaluation.

The results indicate that while the current implementation is pro-
totypical, its performance is scalable and acceptable for debug-
ging small programs but requires further optimization for real-
world applications. We plan to undertake the following future
work.

Compatibility Management Toward Better Feedback
We plan to extend the DVC mechanism to accommodate the

diverse compatibility requirements of real-world software. Prac-
tical software packages often have numerous versions and evolve
non-linearly [8] through experimental features and language ex-
tensions. Currently, however, the DVC mechanism assumes a
linear evolution involving only two versions of classes. The sole
incompatibility annotation available to upstream developers, in-
comp, simply indicates that a version is incompatible with all

© 2018 Information Processing Society of Japan 12

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

others. This limitation it impossible to express incompatibilities
between specific versions in scenarios involving three or more
versions, as commonly encountered in real-world development.
Leveraging tools to manage source code differences and incom-
patibilities, it becomes possible to synthesize feedback that ac-
counts for the history of updates.

Surface Language Design
The current Vython requires specifying class versions in the

surface program. We plan to develop a method to automatically
infer versions working on Python programs. Specifically, we are
considering a mechanism to explore a version combination that
can be executed successfully by automatically iterating the cy-
cle of switching a version of each expression and executing it
with Vython. This will help minimize the annotations given by
downstream developers, identify dependencies on old versions,
and automate updates.

Acknowledgments The authors would like to thank the
members of the PRG lab for their daily discussions. The authors
also thank the reviewers of APLAS 2024 SRC, the audiences of
APLAS & ATVA 2024 and PPL 2024 for their valuable com-
ments on the preliminary stages of this research. Additionally,
the authors are grateful to CRuby committers for their efforts in
investigating two-decades-ago incompatibilities in the case study.
This work was supported by JSPS KAKENHI Grant Numbers
JP23K19961 and JP23K28058.

References
[1] Austin, T. H.: Dynamic Information Flow Analysis for Featherweight

JavaScript Technical Report # UCSC-SOE-11-19, (online), available
from ⟨https://api.semanticscholar.org/CorpusID:16308311⟩ (2011).

[2] Austin, T. H. and Flanagan, C.: Efficient purely-dynamic information
flow analysis, Proceedings of the ACM SIGPLAN Fourth Workshop on
Programming Languages and Analysis for Security, PLAS ’09, New
York, NY, USA, Association for Computing Machinery, p. 113–124
(online), DOI: 10.1145/1554339.1554353 (2009).

[3] Austin, T. H. and Flanagan, C.: Permissive dynamic information
flow analysis, Proceedings of the 5th ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security, PLAS ’10, New
York, NY, USA, Association for Computing Machinery, (online),
DOI: 10.1145/1814217.1814220 (2010).

[4] Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software
Tools (2000).

[5] Carvalho, L. and Costa Seco, J. a.: Deep Semantic Versioning for Evo-
lution and Variability, Proceedings of the 23rd International Sympo-
sium on Principles and Practice of Declarative Programming, PPDP
’21, New York, NY, USA, Association for Computing Machinery, (on-
line), DOI: 10.1145/3479394.3479416 (2021).

[6] Carvalho, L. and Costa Seco, J. a.: A Language-Based Version Control
System for Python, 38th European Conference on Object-Oriented
Programming (ECOOP 2024) (Aldrich, J. and Salvaneschi, G., eds.),
Leibniz International Proceedings in Informatics (LIPIcs), Vol. 313,
Dagstuhl, Germany, Schloss Dagstuhl – Leibniz-Zentrum für Infor-
matik, pp. 9:1–9:27 (online), DOI: 10.4230/LIPIcs.ECOOP.2024.9
(2024).

[7] Carvalho, L. and Costa Seco, J.: Software Evolution with a Typeful
Version Control System, Software Engineering and Formal Methods
(Ölveczky, P. C. and Salaün, G., eds.), Cham, Springer International
Publishing, pp. 145–161 (2019).

[8] Conradi, R. and Westfechtel, B.: Version models for software config-
uration management, ACM Comput. Surv., Vol. 30, No. 2, p. 232–282
(online), DOI: 10.1145/280277.280280 (1998).

[9] Eghbali, A. and Pradel, M.: DynaPyt: a dynamic analysis frame-
work for Python, Proceedings of the 30th ACM Joint European Soft-
ware Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/FSE 2022, New York, NY, USA,
Association for Computing Machinery, p. 760–771 (online), DOI:

10.1145/3540250.3549126 (2022).
[10] Foo, D., Chua, H., Yeo, J., Ang, M. Y. and Sharma, A.: Efficient

static checking of library updates, Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, ESEC/FSE
2018, New York, NY, USA, Association for Computing Machinery, p.
791–796 (online), DOI: 10.1145/3236024.3275535 (2018).

[11] Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virta-
nen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J.,
Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Hal-
dane, A., del R’ıo, J. F., Wiebe, M., Peterson, P., G’erard-Marchant, P.,
Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C. and
Oliphant, T. E.: Array programming with NumPy, Nature, Vol. 585,
No. 7825, pp. 357–362 (online), DOI: 10.1038/s41586-020-2649-2
(2020).

[12] Hayden, C. M., Smith, E. K., Hardisty, E. A., Hicks, M. and Foster,
J. S.: Evaluating Dynamic Software Update Safety Using Systematic
Testing, IEEE Transactions on Software Engineering, Vol. 38, No. 6,
pp. 1340–1354 (online), DOI: 10.1109/TSE.2011.101 (2012). Confer-
ence Name: IEEE Transactions on Software Engineering.

[13] Igarashi, A., Pierce, B. C. and Wadler, P.: Featherweight Java: a mini-
mal core calculus for Java and GJ, ACM Trans. Program. Lang. Syst.,
Vol. 23, No. 3, p. 396–450 (online), DOI: 10.1145/503502.503505
(2001).

[14] Igarashi, A., Pierce, B. C. and Wadler, P.: Featherweight Java: a mini-
mal core calculus for Java and GJ, ACM Transactions on Programming
Languages and Systems, Vol. 23, No. 3, pp. 396–450 (online), DOI:
10.1145/503502.503505 (2001).

[15] Islam, C., Prokhorenko, V. and Babar, M. A.: Runtime soft-
ware patching: Taxonomy, survey and future directions, Jour-
nal of Systems and Software, Vol. 200, p. 111652 (online), DOI:
10.1016/j.jss.2023.111652 (2023).

[16] Jayasuriya, D., Terragni, V., Dietrich, J. and Blincoe, K.: Understand-
ing the Impact of APIs Behavioral Breaking Changes on Client Ap-
plications, Proc. ACM Softw. Eng., Vol. 1, No. FSE (online), DOI:
10.1145/3643782 (2024).

[17] Kula, R. G., German, D. M., Ouni, A., Ishio, T. and Inoue, K.: Do de-
velopers update their library dependencies?, Empirical Software Engi-
neering, Vol. 23, No. 1, pp. 384–417 (online), DOI: 10.1007/s10664-
017-9521-5 (2018).

[18] Lam, P., Dietrich, J. and Pearce, D. J.: Putting the semantics into se-
mantic versioning, Proceedings of the 2020 ACM SIGPLAN Interna-
tional Symposium on New Ideas, New Paradigms, and Reflections on
Programming and Software, Onward! 2020, New York, NY, USA,
Association for Computing Machinery, p. 157–179 (online), DOI:
10.1145/3426428.3426922 (2020).

[19] Lubis, L. A., Tanabe, Y., Aotani, T. and Masuhara, H.: BatakJava:
An Object-Oriented Programming Language with Versions, Proceed-
ings of the 15th ACM SIGPLAN International Conference on Software
Language Engineering, Auckland New Zealand, ACM, pp. 222–234
(online), DOI: 10.1145/3567512.3567531 (2022).

[20] Mirhosseini, S. and Parnin, C.: Can automated pull requests encourage
software developers to upgrade out-of-date dependencies?, Proceed-
ings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, ASE ’17, Urbana-Champaign, IL, USA, IEEE
Press, pp. 84–94 (2017).

[21] Neamtiu, I., Hicks, M., Stoyle, G. and Oriol, M.: Practical dynamic
software updating for C, SIGPLAN Not., Vol. 41, No. 6, pp. 72–83
(online), DOI: 10.1145/1133255.1133991 (2006).

[22] Nethercote, N. and Seward, J.: Valgrind: a framework for heavyweight
dynamic binary instrumentation, SIGPLAN Not., Vol. 42, No. 6, p.
89–100 (online), DOI: 10.1145/1273442.1250746 (2007).

[23] Newsome, J. and Song, D. X.: Dynamic Taint Analysis
for Automatic Detection, Analysis, and SignatureGenera-
tion of Exploits on Commodity Software, Network and Dis-
tributed System Security Symposium, (online), available from
⟨https://valgrind.org/docs/newsome2005.pdf⟩ (2005).

[24] Parnas, D. L.: On the criteria to be used in decomposing systems into
modules, Commun. ACM, Vol. 15, No. 12, p. 1053–1058 (online),
DOI: 10.1145/361598.361623 (1972).

[25] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan,
G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., Desmai-
son, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Te-
jani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. and
Chintala, S.: PyTorch: An Imperative Style, High-Performance
Deep Learning Library, Advances in Neural Information Process-
ing Systems 32, Curran Associates, Inc., pp. 8024–8035 (on-
line), available from ⟨http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf⟩ (2019).

[26] Tanabe, Y., Aotani, T. and Masuhara, H.: A Context-Oriented Pro-
gramming Approach to Dependency Hell, Proceedings of the 10th
ACM International Workshop on Context-Oriented Programming: Ad-

© 2018 Information Processing Society of Japan 13

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

vanced Modularity for Run-Time Composition, COP ’18, New York,
NY, USA, Association for Computing Machinery, p. 8–14 (online),
DOI: 10.1145/3242921.3242923 (2018).

[27] Tanabe, Y., Lubis, L. A., Aotani, T. and Masuhara, H.: A Functional
Programming Language with Versions, The Art, Science, and Engi-
neering of Programming, Vol. 6, No. 1, pp. 5:1–5:30 (online), DOI:
10.22152/programming-journal.org/2022/6/5 (2021).

[28] Tanabe, Y., Lubis, L. A., Aotani, T. and Masuhara, H.: Compilation
Semantics for a Programming Language with Versions, Programming
Languages and Systems (Hur, C.-K., ed.), Singapore, Springer Nature
Singapore, pp. 3–23 (2023).

[29] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T.,
Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,
van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov,
N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J.,
Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perk-
told, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,
Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P. and
SciPy 1.0 Contributors: SciPy 1.0: Fundamental Algorithms for Sci-
entific Computing in Python, Nature Methods, Vol. 17, pp. 261–272
(online), DOI: 10.1038/s41592-019-0686-2 (2020).

[30] Wes McKinney: Data Structures for Statistical Computing in Python,
Proceedings of the 9th Python in Science Conference (Stéfan van der
Walt and Jarrod Millman, eds.), pp. 56 – 61 (online), DOI:
10.25080/Majora-92bf1922-00a (2010).

Appendix
A.1 Incompatible Behaviours Between

NumPy 2.0.0 and 1.26.4
This section outlines some of the major incompatibilities be-

tween NumPy 1.26.4 and NumPy 2.0.0. All 11 examples we col-
lect, along with the scripts to reproduce them, are available on
the GitHub repository (https://github.com/prg-titech/
numpy_diff).

A.1.1 Incompatibilities in numpy.linalg.solve
The numpy.linalg.solve function solves a linear matrix

equation. It solves the equation ax = b for x, where a is a square
matrix and b is a vector or matrix provided as arguments to the
function. The implementation was changed in NumPy 2.0.0. The
following note is from the official NumPy documentation:

Changed in version 2.0: The b array is only treated as a
shape (M,) column vector if it is exactly 1-dimensional.
In all other instances it is treated as a stack of (M, K)

matrices. Previously b would be treated as a stack of
(M,) vectors if b.ndim was equal to a.ndim - 1.

As a result, when b is not strictly one-dimensional, the out-
put of the solve function differs for the same input. For exam-
ple, consider the following program run with NumPy 1.26.4 and
NumPy 2.0.0.

1 import numpy as np
2
3 # Shape (2, 2, 2)
4 a = np.array(
5 [[[3, 1], [1, 2]]
6 , [[2, 1], [1, 3]]])
7 # Shape (2, 2)
8 b = np.array(
9 [[9, 8]

10 , [7, 10]])
11
12 x = np.linalg.solve(a, b)
13 print(x)

When we run the above program with NumPy versions 1.26.4
and 2.0.0, we get the following different outputs due to incompat-
ibility in broadcasting rules.

1 @ Running linalg_solve.py with numpy 1.26.4
2 [[2. 3.]
3 [2.2 2.6]]
4 @ Running linalg_solve.py with numpy 2.0.0
5 [[[2.2 1.2]
6 [2.4 4.4]]
7
8 [[4. 2.8]
9 [1. 2.4]]]

The reason for this difference lies in how the b array is treated
in different versions of NumPy. In version 1.26.4, if b’s num-
ber of dimensions (b.ndim) is equal to one less than the number
of dimensions of a (a.ndim - 1), b is interpreted as a stack of
(M,) vectors. This means that in version 1.26.4, the b array is
treated as a stack of 1-dimensional vectors, each corresponding
to a 2 × 2 matrix in a. Therefore, the program is interpreted as
follows: 3 1

1 2

 x1

x2

 = 98
 ,2 1

1 3

 y1

y2

 =  7
10

 .
However, in version 2.0.0, the behavior was modified such that

the b array is treated as a column vector only if it is strictly 1-
dimensional. In all other cases, it is treated as a stack of (M, K)

matrices. Consequently, for the given input, b is treated as a stack
of 2-dimensional matrices. Therefore, the program is interpreted
as follows: 3 1

1 2

 x1 x2

x3 x4

 = 9 8
7 10

 ,2 1
1 3

 y1 y2

y3 y4

 = 9 8
7 10

 .
A.1.2 Incompatibilities in Other Functions

In addition to numpy.linalg.solve, NumPy 2.0.0 in-
troduces several other backward-incompatible modifications.
Among the programs we collected that produce different outputs
solely due to version differences in NumPy, we list some notable
input-output pairs below. For other examples where downstream
developers might easily notice incompatibilities due to Python
runtime errors, such as differences in output types, please refer to
the repository.

numpy.nonzero

The function return the indices of the elements that are non-
zero. The function previously ignored whitespace so that a
string only containing whitespace was considered False, how-
ever, whitespace is now considered True in string arrays newly
in NumPy 2.0.0.

1 import numpy as np
2
3 arr = np.array(['␣', 'a', ''])
4 print(np.nonzero(arr))

1 @ Running nonzero.py with numpy 1.26.4
2 (array([1]),)
3 @ Running nonzero.py with numpy 2.0.0
4 (array([0, 1]),)

© 2018 Information Processing Society of Japan 14

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

numpy.linalg.lstsq

The function returns the least squares solution to a linear matrix
equation. The default value of the rcond (cut-off ratio) parameter
in lstsq was changed in NumPy 2.0.0. This change introduces
a subtle incompatibility: while most inputs yield the same out-
put regardless of the NumPy version, inputs with elements near
machine precision can produce different results depending on the
NumPy version. The following example illustrates such a case.

1 import numpy as np
2
3 a = np.zeros((10**2, 2))
4 a[0, 0] = 1
5 a[m-1, 1] = 2.22e-16
6 b = np.zeros(m)
7 b[m-1] = 1
8
9 x, res, rank, s = np.linalg.lstsq(a, b)

10 print(...)

1 @ Running linalg_lstsq.py with numpy 1.26.4
2 Solution with default rcond: [0.0000000e+00 4.5045045e

+15]
3 Residuals: [4.93038066e-32]
4 Rank: 2
5 Singular values: [1.00e+00 2.22e-16]
6 @ Running linalg_lstsq.py with numpy 2.0.0
7 Solution with default rcond: [0. 0.]
8 Residuals: []
9 Rank: 1

10 Singular values: [1.00e+00 2.22e-16]

numpy.loadtxt and numpy.genfromtxt
The functions provide readers for simly formatted files. De-

fault encoding for these functions was changed in NumPy 2.0.0.
Previously, these two functions selected encoding=bytes as the
default parameter, but starting from version 2.0.0, it has been
changed to encoding=string. As a result, programs that ex-
pect custom converters assuming a byte value will be broken by
the update.

1 import numpy as np
2 import io
3 def custom_converter(byte_string):
4 return float(byte_string.decode('utf-8'))
5
6 data = b"1.1\n2.2\n3.3\n"
7 with open('data.txt', 'wb') as f:
8 f.write(data)
9

10 # Load the data using loadtxt with the custom converter
11 try:
12 data = np.loadtxt('data.txt', converters={0:

custom_converter})
13 print(f"Data␣loaded␣successfully:␣{data}")
14 except Exception as e:
15 print(f"An␣error␣occurred:␣{e}")

1 @ Running loadtxt_genfromtxt.py with numpy 1.26.4
2 Data loaded successfully: [1.1 2.2 3.3]
3 @ Running loadtxt_genfromtxt.py with numpy 2.0.0
4 An error occurred: could not convert string '1.1' to

float64 at row 0, column 1.

A.2 Dynamically Switching NumPy Versions
This section describes the reproduction of the motivating ex-

amples from Section 2 in actual Python programs. The complete
source code and instrucations to reproduce the results of this pa-
per are available on the GitHub repository (https://github.
com/prg-titech/use-multi-versions).

A.2.1 Installing Multiple NumPy Versions from Sources
For example, to install numpy version 1.26.4 into a directory

named numpy-1.26.4 using pip on a Linux OS, use the following
command.

1 $ mkdir numpy-1.26.4
2 $ pip donwload numpy==1.26.4
3 $ pip install numpy-1.26.4-whl -t numpy-1.26.4

A.2.2 Simultaneouslly Using Multiple NumPy Versions in
Code

The following load numpy function dynamically loads a spec-
ified version of NumPy. It takes a string representing the version,
sets the appropriate NumPy path, and removes any cached in-
stances of NumPy from sys.modules. The function then tem-
porarily modifies the system path to include the specified ver-
sion’s path installed in the last section and imports the NumPy
module from its initialization file. Finally, load numpy returns
the module object for the specified version of NumPy.

1 # version_dispatch.py
2 def load_numpy(version):
3 if version == '1.26.4':
4 numpy_path = os.path.abspath('numpy-1.26.4')
5 elif version == '2.0.0':
6 numpy_path = os.path.abspath('numpy-2.0.0')
7 else:
8 raise ValueError(f"Unsupported␣numpy␣version:␣{

version}")
9

10 # Clear cache
11 if 'numpy' in sys.modules:
12 del sys.modules['numpy']
13 for mod_name in list(sys.modules):
14 if mod_name.startswith('numpy'):
15 del sys.modules[mod_name]
16
17 # Set environment pathes
18 original_path = sys.path.copy()
19 sys.path.insert(0, numpy_path)
20
21 try:
22 numpy_init_path = os.path.join(numpy_path, 'numpy'

, '__init__.py')
23 spec = importlib.util.spec_from_file_location("

numpy", numpy_init_path)
24 if spec is None:
25 raise ImportError(f"Cannot␣find␣numpy␣module␣in

␣{numpy_path}")
26
27 numpy = importlib.util.module_from_spec(spec)
28 spec.loader.exec_module(numpy)
29 finally:
30 # Restore sys.path
31 sys.path = original_path

The following program shows the full version of the pro-
gram shown in Figure 2. The implementation of the pole
placement problem (place poles and my place poles) has
been simplified, as it is not the focus of this section. Using
./version dispatch.py, which defines the load numpy func-
tion described in the previous subsection, place poles is eval-
uated with NumPy 1.26.4 on line 26, and my place poles is
evaluated with NumPy 2.0.0 on line 27. Finally, the results of the
two functions are compared on line 29.

As mentioned in Section 2, despite place poles and my

place poles being identical implementations except for the
NumPy version they use, the result evaluates to False.

1 from version_dispatch import load_numpy
2
3 # SciPy

© 2018 Information Processing Society of Japan 15

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

4 class SciPy():
5 def place_poles(self, A, B, desired_poles):
6 np = load_numpy('1.26.4')
7 res = np.linalg.solve(A, B)
8 return res
9

10 # User Program
11 def my_place_poles(A, B, desired_poles):
12 np = load_numpy('2.0.0')
13 res = np.linalg.solve(A, B)
14 return res
15
16 def main():
17 np = load_numpy('2.0.0')
18 A = np.array(
19 [[[3, 1], [1, 2]]
20 , [[2, 1], [1, 3]]])
21 B = np.array(
22 [[9, 8]
23 , [7, 10]])
24 desired_poles = np.array([-1.0, -2.0])
25
26 expect = SciPy().place_poles(A,B,desired_poles).tolist

()
27 actual = my_place_poles(A,B,desired_poles).tolist()
28
29 test = np.array_equal(expect, actual) # => False
30
31 main()

A.3 Programs Used for Simple Benchmarks
sort performs a merge sort on a Python list of 1000 elements,

is prime uses a simple algorithm to determine the primality of
128456903, fib recursively computes the 20th Fibonacci num-
ber, sieve finds all prime numbers up to 5000 using "Sieve of
Eratosthenes" algorithm, and insert inserts one thousand Node

instances to a binary tree.

A.3.1 insert

1 class Node!1():
2 def __init__(self, value):
3 self.value = value
4 self.left = None
5 self.right = None
6
7 def insert_right(self, v):
8 if self.right == None:
9 self.right = Node!1(v)

10 else:
11 self.right.insert(v)
12
13 def insert_left(self, v):
14 if self.left == None:
15 self.left = Node!1(v)
16 else:
17 self.left.insert(v)
18
19 def insert(self, v):
20 if(self.value <= v):
21 self.insert_right(v)
22 else:
23 self.insert_left(v)
24
25 root = Node!1(5)
26 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
27 for i in a:
28 root.insert(i)

A.3.2 sort

1 def sort(list):
2 if len(list) < 1:
3 return []
4 elif len(list) == 1:
5 return list
6 pivot = list[0]
7 lower_list = []
8 upper_list = []
9 middle_list = []

10

11 for item in list:
12 if item < pivot:
13 lower_list.append(item)
14 elif item > pivot:
15 upper_list.append(item)
16 else:
17 middle_list.append(item)
18
19 sorted_lower_list = sort(lower_list)
20 sorted_upper_list = sort(upper_list)
21
22 return sorted_lower_list + middle_list +

sorted_upper_list
23
24 a = [...] # Array of 1000 elements, random numbers

between 1 and 10000
25 sort(a)

A.3.3 prime

1 def is_prime(n):
2 if n <= 1:
3 return False
4 if n == 2 or n == 3:
5 return True
6 if n % 2 == 0 or n % 3 == 0:
7 return False
8 return is_prime_recursive(n, 5)
9

10 def is_prime_recursive(n, i):
11 if i * i > n:
12 return True
13 if n % i == 0 or n % (i + 2) == 0:
14 return False
15 return is_prime_recursive(n, i + 6)
16
17 is_prime(128456903)

A.3.4 fib

1 def fib(n):
2 if n<=2:
3 return 1
4 else:
5 return fib(n-1) + fib(n-2)
6
7 fib(20)

A.3.5 sieve

1 def sieve(flags, size):
2 prime_count = 0
3
4 i = 2
5 while i < size + 1:
6 if flags[i - 1]:
7 prime_count = prime_count + 1
8 k = 2 * i
9 while k <= size:

10 flags[k - 1] = False
11 k = k + i
12 i = i + 1
13
14 return prime_count
15
16 flags = [True, ...]
17 sieve(flags, 5000)

© 2018 Information Processing Society of Japan 16

Journal of Information Processing Vol.26 1–17 (Jan. 2018)

Satsuki Kasuya He is a graduate student
in Department of Mathematical and Com-
puting Science, School of Computing, In-
stitute of Science Tokyo (formerly Tokyo
Institute of Technology). He received B.S.
degree from Tokyo Institute of Technol-
ogy in 2024. He is interested in program-
ming languages.

Yudai Tanabe He is an assistant profes-
sor in Department of Mathematical and
Computing Science, School of Comput-
ing, Institute of Science Tokyo (formerly
Tokyo Institute of Technology.) He re-
ceived B.S., M.S., and D.S. degrees from
Tokyo Institute of Technology in 2018,
2020, and 2023 respectively. Formerly, he

was a JSPS Research Fellow at Tokyo Institute of Technology un-
til 2023, a program-specific researcher at Kyoto University until
2024, and an assistant professor in Department of Mathemati-
cal and Computing Science, School of Computing, Tokyo Insti-
tute of Technology until September 2024. His research interest
is programming language and software engineering, especially in
programming language theory, type systems, and software main-
tenance.

Hidehiko Masuhara He is a Professor
of Mathematical and Computing Science,
School of Computing, Institute of Science
Tokyo (formerly Tokyo Institute of Tech-
nology.) He received his B.S., M.S., and
Ph.D. in Computer Science from Depart-
ment of Information Science, the Univer-
sity of Tokyo in 1992, 1994, and 1999, re-

spectively, and served as an assistant professor, lecturer, and as-
sociate professor at Department of Graphics and Computer Sci-
ence, Graduate School of Arts and Sciences, the University of
Tokyo from 1995 until 2013. He was the Dean of the School
of Computing of Tokyo Institute of Technology from 2022 until
2024. His research interest is programming languages, especially
in aspect- and context-oriented programming, partial evaluation,
computational reflection, meta-level architectures, parallel/con-
current computing, and programming environments.

© 2018 Information Processing Society of Japan 17

